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The removal of particles from elastic substrates has been an important practical
problem in the electronics industry especially as the sizes of electronic units shrink. In
recent years, there has been an interest in removing submicron level particles from
surfaces. The use of traditional surface cleaning methods, such as ultrasonically
induced #uid #ow, vibrational methods, centrifugal techniques, is limited to
particles that require surface acceleration lower than 107m/s2. For the e!ective
removal of submicron particles, a higher level surface acceleration is needed since
the adhesion forces (mainly van der Waals force for dry surfaces) are related to the
particle size and increase approximately linearly as the characteristic radius of
small particles that are to be removed decreases. In current work, based on the
generalized dynamic theory of thermoelasticity reported, a transfer matrix
formulation including the second sound e!ect is developed for a thermoelastic
layer. The transfer matrix for axisymmetric wave propagation in a thermoelastic
layer is obtained by adopting a double integral transform approach. The second
sound e!ect is included to eliminate the thermal wave travelling with in"nite
velocity as predicted by the di!usion heat transfer model, and, consequently, the
immediate arrival of waves. Using the current formulation and the periodic systems
framework, a transfer function formulation for calculating the accelerations is
developed for transient analysis. A double integral transform inversion method
is used for transient response calculations. Acceleration levels, su$cient for
submicron particle removal, are reported. Various processes such as thermoelastic
stresses, surface evaporation, and optical breakdown may be responsible for
surface acceleration components and particle removal. In current work, only the
surface acceleration due to transient thermoelastic wave propagation is under
investigation.

( 2000 Academic Press
1. INTRODUCTION

Surface cleanness of substrates used in the electronic industry is one of the essential
factors in circuit reliability. The removal of particles from elastic surfaces has
increasingly become an important practical problem as the sizes of features in
electronic components shrink at a high rate. In recent years, the focus of surface
cleaning has been on the removal of submicron level particles.

The use of traditional surface motion-based surface cleaning methods, such
as ultrasonically induced motion, vibrational methods, centrifugal techniques, is
0022-460X/00/110195#23 $35.00/0 ( 2000 Academic Press



196 C. CETINKAYA E¹ A¸.
mostly limited to particles that require surface acceleration lower than 107m/s2.
For the e!ective removal of submicron particles, a higher level surface acceleration
is needed since the adhesion forces (mainly van der Waals force for dry surfaces)
increase approximately linearly as the minimum radius of particles that are to be
removed decreases. A detailed account of surface acceleration mechanisms and
reviews of other industrial techniques for various surface types are found in
references [1, 2].

In current work, based on the generalized dynamic theory of thermoelasticity
reported in reference [3], a transfer matrix formulation including the second sound
e!ect is developed for a thermoelastic layer. For a historical perspective on
developments in the second sound e!ect in solids, the reader is referred to a series of
extensive review articles [4}7]. A more recent review on the topic can be found in
reference [8]. In this study, the transfer matrix for axisymmetric wave propagation
in a thermoelastic layer is obtained by utilizing a double integral transform method.
The second sound e!ect, through a relaxation time term, is included to eliminate
the thermal wave travelling with in"nite velocity as predicted by the di!usion heat
transfer model, and, consequently, the immediate arrival of waves. Similar transfer
function formulations are utilized in reference [9] for calculating stress components
due to laser beam excitation without considering a relaxation term, and in reference
[10] for surface displacement calculations under laser heating. The transfer matrix
formulation for axisymmetric elastic waves (without thermal e!ects) was given in
reference [11]. The transfer matrix formulation has been used in various contexts
(e.g., see references [12, 13] for its elegant use in layered structures) in elastic wave
propagation since their introduction in the early 1950s [14, 15] in seismology.
Using the current formulation and the periodic systems framework, a transfer
function formulation for calculating the acceleration and temperature "elds is
developed for transient analysis (a recent detailed review on periodic systems
research can be found in reference [16]). In the current study, a double integral
transform inversion scheme based on the Fast Fourier Transform algorithm and
Hankel transform is used for the transient analysis. It is found that acceleration
levels are su$cient for submicron particles removal. As noted in reference [17],
various processes such as thermoelastic stresses, surface evaporation, and optical
breakdown may be responsible for surface acceleration. Here only the surface
acceleration, due to transient thermoelastic wave propagation generated by a
heating source, is under investigation. No detailed temperature result is presented
in the current work; however, preliminary numerical work indicated that the
temperature increase on the surface is low compared to the melting point of the
layer material. In a "nite element study [18], a similar level of temperature increase
is reported.

Recent advances in photonics and laser instrumentation (such as pulsed laser,
laser interferometry, and "ber optics) and price structure in industry have been
creating a favorable environment for thermal-based elastic wave generation
techniques and their applications in various "elds, such as non-destructive testing,
smart structures, and surface cleaning.

The inverse problem, namely, the study of the characteristics of the adhesion
between the surface and particle, can also be of practical interest. The current
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formulation along with experimental interferometric data can be used in a detailed
characterization of bonding for various surface and particle materials.

2. FORMULATION

&&In an idealized solid, thermal energy is transported by two di!erent
mechanisms: the quantitized electronic excitations, which are called free electrons,
and the quanta of lattice vibrations, which are called phonons. These quanta
undergo collisions of a dissipative nature, giving rise to thermal resistance in the
medium. A relaxation time q

0
is associated with the average communication

time between these collisions for the commencement of resistive #ow'' [6]). In the
following formulation, this relaxation e!ect is taken into account in order to
eliminate the in"nite thermal wave propagation speed paradox.

The linearized governing equations for the displacement, u, and absolute
temperature, ¹, "elds for a homogeneous medium consist of two coupled partial
di!erential equations, the (Navier's) equation of motion and the energy equation:
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where j and k are LameH constants of the layer material, o
0

is the layer material
density, i is the thermal conductivity, c is the speci"c heat capacity, h is the internal
heat source intensity, ¹

0
is the temperature at the normal state, q

0
is the relaxation

time, and overdot represents time-derivative, and b is the thermo-elastic coupling:
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where a is the thermal expansion coe$cient. The relaxation time q
0
&&represents the

time-lag needed to establish steady state heat conduction in an element of volume
when a temperature gradient is suddenly imposed on that element'' [3].

These coupled equations are complemented by the following constitutive
relation and Fourier's law for isotropic materials:
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where p
ij

is the stress tensor, q
i
is the heat #ux in the direction i, d

ij
is the Kronecker

delta, and the index following the comma in the subscript indicates di!erentiation
with respect to corresponding co-ordinate. These expressions constitute the
generalized dynamic theory of linear thermoelasticity which was "rst proposed in
reference [3].

Unlike the classical heat equation which is a parabolic partial di!erential
equation in the generalized theory, the energy equation (2) contains a term with
¹G which makes it a hyperbolic equation as the displacement equation (1). This
solves the problem of in"nite speed thermal wave propagation predicted by the
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heat di!usion equation. The propagation of thermal waves, the second sound e!ect,
was "rst postulated by Maxwell [19] in 1867 on the physical argument that heat
pulses cannot propagate with in"nite velocity in matter. For the "rst time, Peshkov
[20] experimentally demonstrated that thermal waves propagate at "nite velocity
in liquid Helium in 1944. However, the experimental veri"cation in solids is still
largely an open problem (e.g., cf. references [6, 7]).

An approximation for the relaxation time for metallic materials is given in
reference [21] as

q
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. (5)

Using this approximation, a speed for thermal wave propagation is obtained:
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The "rst step in generating a transfer matrix formulation for a thermoelastic layer is
to adopt the Helmholtz decomposition for the displacement "eld into the scalar, /,
and vector, u, potentials functions:

u"+/#+]u, (7)

and the body force "eld is also decomposed into the scalar, g, and vector, h,
components

f"!+g!+]h (8)

with the gauge conditions that are required to eliminate the problem of
over-determinedness of the "eld variables:

+ )u"+ ) h"0. (9)

Representing equations (1)}(4) in terms of these potential functions results in three
wave equations (one of which is decoupled) in the (vector and scalar) displacement
potentials and temperature:
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, are, respectively, the propagation

speeds of irrotational isothermal and equivoluminal isothermal waves in anisot-
ropic medium). In the absence of body forces, g"0 and h"M0, 0, 0NT, the wave
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"eld in cylindrical co-ordinates can be studied by considering only two potential
function components since some shear stress components diminish due to the
axisymmetry of the wave "eld: the scaled potential, /, and the radial potential
vector component, uh . After adopting the non-dimensional variables
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where H is a characteristic distance (later the layer thickness will be used), t is the
time, z is the axial co-ordinate, and r is the radial co-ordinate. The Fourier
transform in q, the scaled time, and Hankel transform of order zero in o, the scaled
radial co-ordinate, for the initial conditions are
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Equation (10) can be written as

b
1
UM 0#

d2UM 0
dm2

#b
2
¹M 0"0, (15)

where b
1
"!(k2#(c2

L
/c2

T
)p2), b

2
"!(Hb/c2

L
o
0
) , p and k are the Laplace variable

and the scaled radial wave number, the overbar stands for the Laplace transformed
state variable, and the superscript 0 is for the zeroth order Hankel transformed
quantity. With the Fourier transform in q and Hankel transform of order one in o,
equation (11) becomes
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where superscript 1 is for the "rst order Hankel transformed quantity. Finally the
Fourier transform in q and Hankel transform of order zero in o, equation (12), can
be obtained in the form
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In these equations, the potential function WM 1 is decoupled from UM 0 and ¹M 0. Since
only the P-wave causes the volume change, UM 0 and ¹M 0 are functionally related. WM 1
corresponds to the equivoluminal motion, and therefore it has no e!ect on the
thermal terms. The solution to WM 1 from equation (16) is
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solving equations (15) and (17) simultaneously yields the solutions to the
temperature and scalar potential functions:
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The modi"ed heat conduction law of Fourier for the second sound e!ect in the
m direction after the Fourier transform becomes
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From equations (3) and (7), the transformed displacements and stress components
in terms of the potential functions and the temperature are represented as
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Substituting the scalar potential and temperature "elds into these heat, displacement
and stress components in potential functions, a six-by-six transfer matrix
formulation for the integration constants, B
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] are given as
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By inspection, the matrix [¹ (m)] is decomposed into a multiplication of two

matrices:
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From equation (28), the boundary conditions on the top and the bottom surfaces of
a thermoelastic layer become
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where the thermoelastic state vectors are
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By eliminating the integration constants in equations (31) and (32), the following
matrix equation relating the displacement, stress and thermal state at the two
surfaces of a layer with a thickness H is obtained:

MSN
R
"[¹
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]MSN

L
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where [¹
layer

]"[¹ (1)] [¹ (0)]~1. The coe$cient matrix on the left-hand side of
equation (33), namely [¹ (1)] [¹ (0)]~1, can be written as [¹ (0)] [K] [¹ (0)]~1
which implies a similarity transformation between the transfer matrix for a layer
and the matrix [K]. Since the matrix [K] is diagonal, the entries of this matrix are
the eigenvalues of the transfer matrix and the columns of [¹ (0)], therefore,



TABLE 1

Material thermoelastic properties and thicknesses of the layers (Systems I and II ).
¹he two layers di+er only in the layer thicknesses

Systems I and II

E"310)3GPa
o
0
"3248)8 kg/m3
j"124)1GPa
k"124)1GPa

H
1
"3)125]10~3m for System I

H
11
"6)25]10~3m for System II

l"0)25
c
L
"10705)2m/s

c
T
"6180)6m/s

i"403W/mK
c"390 J/kgK

b"1)0394]107
q
0
"8)322]10~12 s
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correspond to the eigenvectors of the transfer matrix [¹
layer

]. In monitoring and
controlling the inherent numerical instabilities (loss of precision) in the hyperbolic
transfer matrices, an accurate calculation of the condition number is important
and, for the transfer matrix [¹

layer
], it is the maximum of c2Dc1D or e2 Dd1

D due to
equation (30).

3. THERMOELASTIC TRANSIENT RESPONSE

Once the transfer matrix is developed, it is straightforward to calculate the
transfer function between the applied thermal "eld on a circular area on a surface of
the layer and any other state variable (see equations (31) and (32)) at any point in
the layer (inside or on a surface of the layer). The condition number for the transfer
matrix is the maximum of e2Dc1D or e2Dd1

D. With this knowledge at hand, the inherent
numerical instability problem can be monitored and controlled without introducing
considerable error. In this study, the axial and radial transient acceleration
components in two thermoelastic structures (Systems I and II) with di!erent
thicknesses are computed at eight station points. The material thermoelastic
properties and thicknesses of the layers for Systems I and II are listed in Table 1.
The layer material properties are for a metallic material. Note that the two systems
di!er only in the layer thicknesses. The locations of these eight points are depicted
in Figure 1 for r

0
"5 mm.

In the transient response simulations, the maximum radial frequency (Nyquest
frequency) in the transfer function computations is 0)79 GHz for both Systems
I and II. This frequency range covers more than 50 natural frequencies. The
maximum value of the radial wavenumbers, k

max
, for System I is 32 000 m~1



Figure 1. Cross-section of a layer showing the eight station points at which axial and radial
components of the acceleration vector are computed (r

0
"5mm).
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(corresponding minimum wavelength j
min

"0)31mm) for the upper surface (where
the laser heating is applied) and is 20 800m~1 (corresponding minimum
wavelength j

min
"0)48mm) for the lower surface. The maximum value of the radial

wavenumber, k
max

, for System II is 25 600m~1 (corresponding minimum
wavelength j

min
"0)39mm) for both the upper and lower surfaces of the layer.

These values are dictated mainly by the power spectrum (Figures 2(a}b)) and the
Hankel transforms of the spatial component of the input heating function
(Figures 3(a}c)).

Systems I and II are excited by a temporal-spatial thermal "eld on the top
surfaces:

q
z
"f

1
(t) f

2
(r).

The heat #ow mimics a laser-based heating. While most laser beams provide
Gaussian-type distribution, for simplicity, in the simulations the temporal
dependency of the applied heat "eld is trapezoidal (Figure 2(a)), and the spacial
dependency is a step function with a 5-mm radius support (Figure 3(a)). In case of
a Gaussian-type distribution, the power spectrum of the function f

1
(t) will be

di!erent. No other laser e!ects (such as surface evaporation and optical breakdown)
are considered in these simulations. The power spectrum of the time-dependent
part of the excitation is given in Figure 2(b). The zeroth and "rst order Hankel
transforms of the spatial-dependent part are given in Figures 3(b) and (c). These
"gures along with the transfer functions are used to determine the Nyquest
frequency and the maximum wave number for the excitation. Free-free boundary
conditions are imposed in calculating transfer functions. The numerical simulations
are based on the Fast Fourier Transform algorithm and an inverse Hankel
transform scheme. Various sampling rates ranging from 105 to 107 are used for the
required resolution in order to obtain physically meaningful results. In some cases,



Figure 2. (a) Applied thermal "eld (heat #ux) in time, f
1
(t), and (b) its power spectrum.
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a material damping is used to minimize the e!ect of excessive sampling requirements
around the resonance frequencies. Commonly used values for material damping
were in the range of 1}5%. As previously noted, in the case of thermoelastic wave
propagation, the need for material damping is less severe than the purely elastic
case since the coupling between the displacement and temperature "elds provides
mode conversion attenuation.

In Figure 4, the axial acceleration (in the z direction) at Station 1 for the two
systems is compared. Due to axisymmetry, there is no radial acceleration at Station
1. Regardless of the layer thickness, the maximum and minimum acceleration levels
are about the same for both systems, since the thermoelastic wave "eld is nearly
one-dimensional in the early times (compared to the travel times needed to observe



Figure 3. (a) Applied "eld in the radial co-ordinate r, f
2
(r), (b) its zeroth and (c) "rst order Hankel

transforms.
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the dimensionality of the input functions). The high-frequency component
superimposed on the response of System II in Figure 4 is more likely a numerical
error which comes from a lightly damped natural frequency.

At Station 2, the di!erence in the maximum and minimum acceleration levels is
becoming visible. The arrival of the wave front in System I is stronger than that in
System II. The calculated arrival time for System I at Station 2 is approximately
0)29ks. The arrival times in Figure 5 are in agreement with the calculated values for
both systems. In Figures 6(a) and (b) both components of the acceleration are
presented. While the extremum values of the axial acceleration in both systems are
very close to each other, the radial acceleration in System I is nearly twice as much



Figure 3. Continued

Figure 4. Acceleration in the z direction versus time for Systems I (*) and II () ) ) ) )) at station point 1.
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as that in System II in the "rst 2)0ks time period (Figure 7). After this time period,
the acceleration levels in both systems di!er very little.

At Station 4, the axial acceleration levels in System I are 10}15% more that in
System II, and the radial acceleration in System I is 60}70% more that in System II.
At station 5, the acceleration levels for both systems di!er very little. The arrival
time at Station 5 is approximately 0)47ks as one can observe in Figures 8(a) and (b).
The arrival of the wave front is more visible in the radial acceleration results. The
di!erence in the extremum values of the accelerations is in the range of 5}10%.
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From Stations 3 to 5, a large reduction in acceleration (up to 75%) is observed, even
though the distance between the two stations is 5 mm. In Figures 8(a) and (b), it is
clear that the large wave front acceleration is due to a Rayleigh and/or shear wave
component.

The di!erence between acceleration levels nearly diminish at Station 6 (Figures
9(a) and (b)). It appears that the only e!ect layer thickness causes is on the arrival
times far away from the heated region. This observation is supported by the
response at Stations 7 and 8 further depicted in Figures 10(a) and (b) and 11(a, b).
Figure 5. Acceleration in the z direction versus time for Systems I (*) and II () ) ) ) )) at station point 2.

Figure 6. Acceleration versus time (a) in the z direction (b) in the radial direction r for Systems I (*)
and II () ) ) )) at station 3.



Figure 6. Continued
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In Figures 12(a, b) and 13(a, b), the change of the maximum and minimum
acceleration levels as a function of the station location is summarized.

4. LASER PULSE ENERGY

In pulsed lasers, the pulse energy is listed as a performance speci"cation, and it
typically varies from a few mJ (milli Joule) to few Joule levels. Results reported in
Figures 5}13 are generated for a pulse with unit amplitude, and so they can be used
for a laser with various pulse energies. For this normalization the following scaling
factor is derived by considering the energy under the area of the trapezoidal pulse in
time:

q"
2Q

0
nr2

0
(c#b!a)

,

where Q
0

is the pulse energy of the laser, r
0

is the radius of the laser beam, a, (b!a)
and (c!b) are, respectively, the time interval for inclining, plateau, and declining
portions of the trapezoid. The pulse duration is speci"ed by c. For example, the
normalization factor q for a laser with pulse energy Q

0
"50mJ is approximately

8)8]109. Thus, from Figures 12 and 13, the maximum acceleration levels are
determined to be in the order of 109 for such a laser.

5. CONCLUSIONS AND REMARKS

A six-by-six axisymmetric transfer matrix formulation for an thermoelastic layer
is generated. The formulation includes the second sound e!ect (through the
relaxation term in both the equations of motion and energy) to eliminate the



Figure 7. Acceleration versus time (a) in the z direction (b) in the radial direction r for Systems I (*)
and II () ) ) )) at station 4.
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in"nite propagation (phase) speed for thermal waves that is predicted by the
di!usion heat transfer model. It is found that the inclusion of the interactions
between the thermal and mechanical e!ects results in (1) a new highly attenuated
mode, and (2) a very small attenuation in the pressure (P) wave mode; the shear
mode is una!ected since, in the model, the thermal-elastic coupling is through
volumetric change. In the current work, no transient temperature result is
presented; however, preliminary work has indicated that the temperature increase
on the surface is low compared to the melting point of the layer material.

The transfer matrix is obtained in closed form and is represented in a similarity
transform form. With this representation, the condition number of the transfer



Figure 8. Acceleration versus time (a) in the z direction (b) in the radial direction r for Systems I (*)
and II () ) ) )) at station 5.
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matrix can easily be calculated and, consequently, the inherent numerical
instability (loss of precision) in hyperbolic wave propagation problems could be
monitored and controlled. This regulation will be even more important in the
thermoelastic analysis of layered structures.

It is observed that the acceleration level can reach as high as 109m/s2 and the
e!ect of layer thickness diminish as the distance between the beam location and the
station point is increased. This observation suggests that for these particular layers
surface waves play an important role in acceleration. However, it is noteworthy
that no material damping mechanism is present in the current formulation, and it is
known that material damping can signi"cantly reduce the peak acceleration levels
(e.g., see reference [22] for its e!ect on composites).



Figure 9. Acceleration versus time (a) in the z direction (b) in the radial direction r for Systems I (*)
and II () ) ) )) at station 6.
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Acceleration levels computed in the current work are high enough to remove
particles as small as submicron level with a laser with common pulse energy. It is
possible that by utilizing the superposition principle, even a higher level of
acceleration can be achieved by multiple heating patterns provided that the surface
deformations initiate no surface cracks. No local rotation of the surface is taken
into account in the current study. It is possible that rotation could substantially
increase the acceleration levels (due to the angular momentum). It is known that the
rolling motion due to the angular acceleration of particles increases the cleaning
e!ectiveness (e.g., see references [1, 2]).

The formulation and simulations can be used in relating the acceleration levels to
bond (adhesion) forces, and particle radius. The inverse problem, namely, the study



Figure 10. Acceleration versus time (a) in the z direction (b) in the radial direction r for Systems
I (*) and II () ) ) )) at station 7.
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of the characteristics of the adhesion between the surface and particle, can also be of
practical interest. The current formulation along with experimental interferometric
data can be used in a detailed characterization of bonding for various surface and
particle types and materials.



Figure 11. Acceleration versus time (a) in the z direction (b) in the radial direction r for Systems
I (*) and II () ) ) )) at station 8.
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